

User defined protocol

User Manual

WUXI XINJE ELECTRIC CO., LTD.

Catalog

1	Intro	duction		3
2	Proce	dure		4
	2-1	Have	e a view of destination device protocol	4
			ster and establish protocol file	
		-	am a protocol file	
		•	Introduction	
		2-3-2	Where do program protocol code ?	9
			Structure of protocol code	
			Procedure	

1 Introduction

■What is user-define protocol?

User-define protocol is a communication protocol programmed by users to support those devices which are not included in device list.

■ Why do we use user-define protocol?

As a communication rule, communication protocol is an agreement made by both transmission parties, including data structure, synchronous method, transmission speed, debug method, character define and so on. In other word, the data transmission between panels and device takes effect only when both parties comply with communication rule strictly.

As we can see from the *Touchwin* editing tool, most of the communication protocol for general PLC, inverter and other protocol in market already in the selection list of devices.

Device	
	Please select port PLC device:
	Thinget XC Series Thinget FC Series Thinget V5 Series Inverter Mitsubishi FX Series Mitsubishi Q Series Omron CPM/CQM Series Omron CP/CJ/CS Series Siemens S7-200 Series Siemens S7-300/400 AB Micrologix,SLC Series (DF1 Full-duplex P Koyo S Series Schneider (Micro/Neza/Twido) Matsushita (FP0/FP1)
	Com Para: 19200, 8, Even, 1 Setting

Devices list

If the destination device is not listed in the device list, please check whether the protocol of this device is same as those have existed in the list, such as 'Modbus' protocol. In this case, just select the same protocol, otherwise ,program a user-define protocol according to destination device.

2 Procedure

2-1 Have a view of destination device protocol

The following chapters take device V900(a virtual parameter) for example to describe how to program a user-define protocol.

Please find out the send and receive data information from the V900 communication protocol. In this example, the parameters including current weight, destination weight and flow, will appear on panels.

Address of assignment of V900			
Current weight	H42	Flow	H43
Destination weight	H44		

Data structure of read registers				
Request to V900	Station NO.	Function code (read registers)03	Starting Address	Checksum
Response from V900	Station NO.	High byte	Low byte	Checksum

Set communication parameters of V900 as follow:

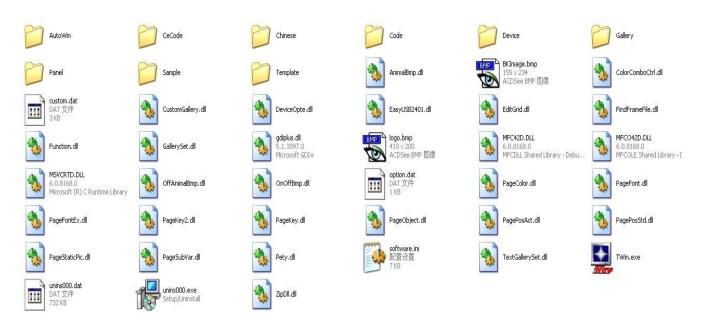
Station NO: 1 Baud rate:9600 Even parity Data bit :8 Stop bit:1

There is example of data structure based on V900

Read current weight:
 Request: H01 H03 H42 SUMCHECK
 Response: H01 Highbyte Lowbyte SUMCHECK

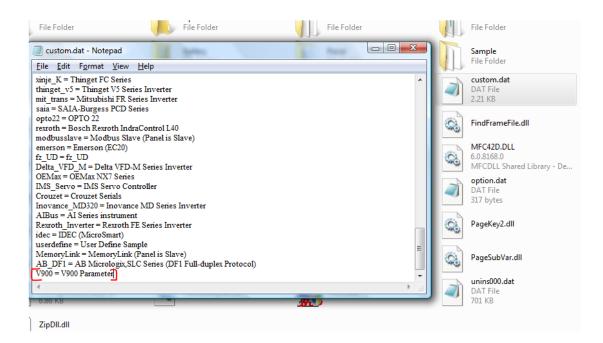
2. Read flow:Request: H01 H03 H43 SUMCHECKResponse: H01 Highbyte Lowbyte SUMCHECK

3. Read destination weight:Request: H01 H03 H44 sumcheck;Response: H01 Highbyte Lowbyte SUMCHECK

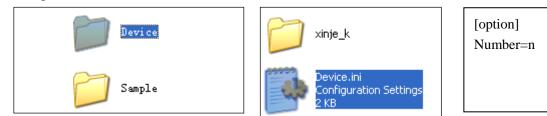

2-2 Register and establish protocol file

Introduction

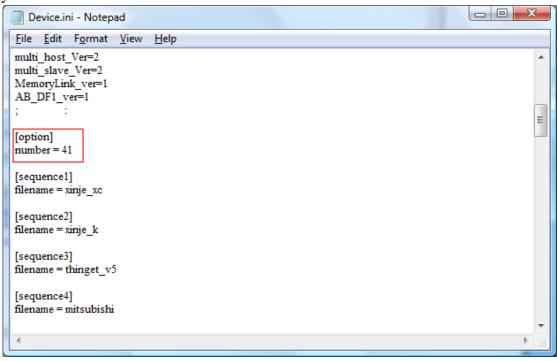
The purpose of this step is to add new device item named V900 into device list, and establish carrier file for this protocol.


Procedure

1. Open the root directory of *Touchwin* software:



2.Find the *custom..dat* file and open in notepad format, add item 'V900=V900 parameter' in bottom part, save this and close. Please note that the left part of '=' is filename, the right part of '=' is device name existed in device list.

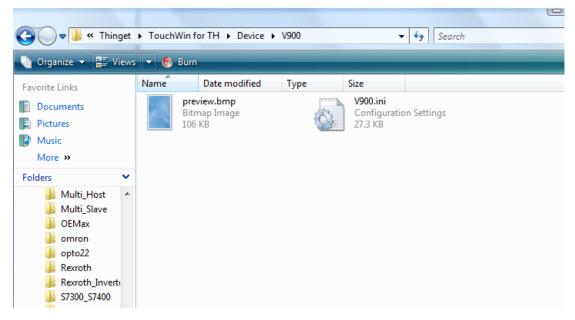

Note: please remove the *attributes 'read-only'* or '*hidden'* if there is a problem in saving operation.

3. Open the file '*Device*' in the root directory and find configuration file '*Device.ini*' to check following code:

In this example, the quantity of devices is n=41, after adding a new item, now the quantity is n=41+1=42

4. Please add the following content in the bottom part of 'Device.ini' file.

[sequence42]


filename = V900

Save this change and exit.

Device.ini - Notepad	
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat <u>V</u> iew <u>H</u> elp	
[sequence36] filename = IMS_Servo	·
[sequence37] filename = Crouzet	
[sequence38] filename = Inovance_MD320	
[sequence39] filename = AIBus	
[sequence40] filename = Rexroth_Inverter	
[sequence41] filename = userdefine	
[sequence42] filename = V900	E
•	

5. After this please return to '*Device*' file and establish a new file named '*V900*', open this new file and build the following two files.

Note: you can build these two new files by copying from other device file , and rename as '*V900*'

6. Now, the step of 'register and establish protocol file' is finished and you will find the

Device		×
	Please select port PLC device: Free Type (Panel is Slave) MemoryLink (Panel is Slave) ESTUN Servo fz_UD Mitsubishi FR Series Inverter Delta VFD-M Series Inverter IMS Servo Controller Crouzet Serials Inovance MD Series Inverter Al Series instrument Rexroth FE Series Inverter User Define Sample V900 Parameter Com Para: 19200, 8, Even, 1 <u>S</u> etting	4 III •
< <u>B</u> ack	: <u>N</u> ext > Finish Cano	cel

device named 'V900 parameter is existed in the device list already.

2-3 Program a protocol file

2-3-1 Introduction

This chapter will describe how to program protocol code.

2-3-2 Where do program protocol code?

Open 'V900'file in the 'Device' file from root directory to double-click file 'V900.ini' file where we program protocol code.

2-3-3 Structure of protocol code

AS a communication rule, protocol code consists of following parts:

- File description
- Default communication setting

- Default Station NO
- Object description
- Communication rule
- Object Type optimization

2-3-4 Procedure

• Descript (File description)

Please write the following content in 'V900.ini'file with a standard form, as below: [descript] DeviceModelCode=22 FirmwareName=UserDefine DownLoadDll = \Device\UserDefine\DownLoad.dll SpecInfoDll = \Device\UserDefine\DownLoad.dll DeviceType = 100

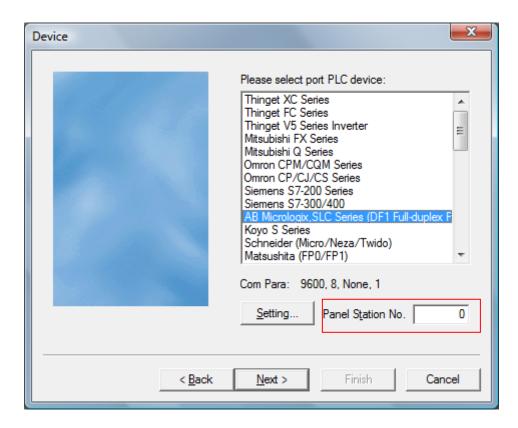
• Communication (Default communication settings)

Set the default communication parameters when you select the V900 device:

Device		
	Please select port PLC device:	
	Free Type (Panel is Slave) MemoryLink (Panel is Slave) ESTUN Servo fz_UD Mitsubishi FR Series Inverter Delta VFD-M Series Inverter IMS Servo Controller Crouzet Serials Inovance MD Series Inverter AI Series instrument Rexroth FE Series Inverter User Define Sample V900 Parameter	A III
	Com Para: 9600, 7, Even, 2	
	<u>Setting</u> Default C	ommunicatio
	Parameter	
	< Back Next > Finish	Cancel

Write the following 'default communication setting' code as below:

[Communication]	
BaudRate=9600	; Baud rate
DataBits=8	; Data bits
Parity=2	; Parity 0-None, 1-Odd, 2-Even
StopBits=0	; Stop bit 0-1 bit, 1-1.5 bits, 2-2 bits


• StationNo (Default station NO)

This part is comprised of panel part and device part, code is showed as below:

[StationNo]	
PanelWithStationNo=0	; 0: station NO of panel is not permitted to set 1:settable [Note 1]
PanelDefaultStationNo=	;Default station NO of panel, 'there is no value because the station NO
	is not permitted to set in this example';
PanelMinStationNo=	;the minimum Station NO of panel. 'there is no value because the
	station NO is not permitted to set in this example';
PanelMaxStationNo=	;The maximum Station NO of panel . 'there is no value because the
	station NO is not permitted to set in this example';
DeviceWithStationNo=1	; 0: station NO of device is not permitted to set 1: settable [Note 1]
DeviceDefaultStationNo=1	; Default station NO of device with 1
DeviceMinStationNo=0	; The minimum Station NO of device
DeviceMaxStationNo=255	; The maximum Station NO of device

NOTE 1

Notation: As a slave in communication system, the station NO of panel is settable with setting *PanelWithStationNo=1* as showed in the device list; when *PanelWithStationNo=0*, the settable information is not eyeable.

• Object (Object description)

This chapter takes example to describe how to write code for *object description*. If we need to read the current weight of V900 device, we should define the occupied spaces and communication rule.

[Object]
ObjectNum=13 ; Numbers of objects
[Object1] ; The first object
CanAct=1 ; Space unit occupied by objects, 0- bit; 1-register; 2-register group [Note 1]
IDSymbol= Current Weight ; Item name lied in software [Note 2]
TypeNo=0; Corresponding 'Object Type optimization' NO.
bitlength = 16 ; ' <i>current weight</i> ' occupies 16 bits
DescripNum=1 ; Section No. of <i>object description</i> [Note 3]
CanSelectType=4 ; Data type selection: (0000 0100) ;5-3 bytes,4-n Regs,3-dword,
2-word,1-byte,0-bit [Note 4]
ReadWord = 1 ; Called communication rule No. of ' <i>read register</i> '
[Object1Descrip1] ; Object description Section 1
Caption= ; standard form
Type=0 ; Type of digital input in software
0-Number,1-(0-7),2-(00-07),3-(0-15),4-(00-15),
5-(0-F),6-(00-0F),7-(0-31) [Note 5]

DefaultNumber=0	; Default value of digital input in software
MinNumber=0	; Min number of digital input in software
MaxNumber=0	; Max number of digital input in software
format=10	; Data format of digital input in software
NumberStep=1	; Standard format

Notation :

[Note 1]: This item is used to define the *object type* that this item belongs to: bit, register or registers. When we select with Bit, this means the object name will appear on *bit* component like '*lamp button*'; when we select with register, this means the object name will appear on *word* component like '*digital input, digital display*'; when we select registers, that means object name will appear on *registers* components like '*character input*'.

[Note 2]: Component will contains items--'*current weight*', as below:

Digital Input	X
Object Display Input Font Color Position	
Operate Object Station Device PLC Port VirStaNO 0 Station 0	
Object Object Current W I Indirect FlowRate Data TargetValu	
Data Type PSW PFW T	
Vatch Object Station Device PLC Port	
VirStaNO 0 Station 0	
Object Object Current W	
OK Cancel	.pply

(Note 3**)** : *Section No*. of object description, we set with '1' in this example which means there is only one description value with this object type, as above.

But it is noted that there are two description values for some object type in some protocol. For example, we can see that the object type D in *Omron PLC* protocol consists of two sections, like *D100B* is comprised of 100 which is in Decimalist format and B which is in range from 0 to F,thus we can proram code as follows (note : A part is code for 100, B part is code for B):

[Object9] CanAct=0 IDSymbol=D TypeNo=0 bitlength = 16 DescripNum=2 CanSelectType=1 ReadBit=16 SetBitOn=23 SetBitOff=23

[Object9Descrip1] **A part** Caption= Type=0 DefaultNumber=0 MinNumber=0 MaxNumber=99999 format=10 NumberStep=1

[Object9Descrip2] **B part** Caption=. Type=3 DefaultNumber=0

Button		×
Object Opera Station Device VirStaNO Object	te Button Color Position	
Object	Description1 Description2	
	OK Cancel	pply

[Note 4] : Define data type which is comprised of 8 bits in binary system:

Bit	7	6	5	4	3	2	1	0
1	-	-	3 bytes	n Regs	dword	word	byte	bit
0	-	-	-	-	-	-	-	-

If we need option both word and Dword, we can have value 00001100, in decimalist form is 12, thus we can write code CanSelectType=12, as follow:

;

Digital Input	×
Object Display Input Font Color Position	
Operate Object Station Device PLC Port VirStaNO O Station Object	
Object D 0	
Data Data Tyre Word V DWord DWord	
Station Device PLC Port	
VirStaNO 0 Station 0 Object Object D 0 Indirect	
)
OK Cancel	Apply

(Note 5**)**: Type of digital input in software

Standard Value.	Type of digital input	
0	0~ the maximum value	
1	(0-7)	
2	(00-07)	
3	(0-15)	
4	(00-15)	
5	(0-F)	
6	(00-0F)	
7	(0-31)	

When we select standard value with 5, the display in software is showed as below:

La	imp
	Object Lamp Twinkle Color Position
	Station Device PLC Port v VirStaNO 0 Station 0
	Object Object D Object Indirect Object
	OK Cancel Apply

• CommuRule (Communication rule)

This chapter describes the data structure of request as a hardcore of a protocol. [CommuRule]
CommuRuleNum = 19 ; Numbers of communication rule
Is $Use ASC = 0$; Use ASC format or not 0:No use ASC, 1: use ASC as Transmit Data
LowBitToASC = 0 ; Ignore high bit or not ? $0:NO, 1:YES$ [Note 1]
IsHightBitNext = 0 ; Based on ASC convert, is high bit or low bit in the first 0:NO, 1:YES [Note2]
Is High Bit Wext = 0 ; Take word as basic unit, is high byte in the first position? $0:No, 1:YES$
Is Hight Word Next = 0 ; Take Dword as basic unit, is high word in the first position? 0:NO, 1:YES
[CommuRule1]
IsInherit = 0 ; This communication rule is inherit or base? base=0 inherit=1 [Note 3]
GroupNum = 2 ; Group Number of data transmission, set this value with 2 because the data transmission
consists of two steps: request and response.
Group1Type= 0 ; Group 1 is defined as data request
Group1Blocks = 4 ; Block quantity of group 1 is 4
Group2Type = 1 ; Group 2 is defined as data response
Group2Blocks = 3 ; Block quantity of Group 2 is 3
Group1Block1 = 4 ; The 1st block of group1: Station No. of device [Note 4]
Group1Block2 = 5 ; The 2^{nd} block of group1: Function code. [Note 4]
$Group1Block2_CmdNo = 3$
Group1Block3 = 1 ; the 3^{rd} block of group1: Static data [Note 4]
Group1Block3_StaticValue = 0x42 ;
Group1Block4 = 11 ; The 4th block of group1: check [Note 4]]
Group1Block4_StartBlock = 1
Group1Block4_EndBlock = 3
Group1Block4_SelectMethod = 1
Group2Block1 = 4 ; The 1st block of group2: (Note 4)
Group2Block2 = 10 ; The 2^{nd} block of group2: data [Note 4]
Group2Block2_DataAreaType = 1
Group2Block3 = 11 ; The 3^{rd} block of group2: check [Note 4]
Group2Block3_StartBlock = 1
Group2Block3_EndBlock = 2
Group2Block3_SelectMethod = 1
[CommuRule2]
IsInherit = 1 ; This communication rule is inherit or base? base=0 inherit=1
InheritRule = 1 ; Where does this communication rule inherit from?
$\mathbf{C}_{roup1} \mathbf{P}_{lock2} = 1$
Group1Block3 = 1 Enumerate the block need to redefine
Group1Block3_StaticValue = 0x44

Notation

[Note1]:

There is an example for how to interpret this code, for example, after converting to ASC format ,0x56 becomes 0x35,0x36, if we set this with LowBitToASC = 0, so the code 0x56 becomes 0x36.

[Note2] :

There is an example for how to interpret this code, for example, after converting to ASC format,0x56 becomes 0x35,0x36, if we set with IsHightBitNext = 1, so the code 0x56 becomes 0x36, 0x35.

Note3

Base: define each block of communication rule.

Inherit: only to enumerate the block need to redefine when the communication rule is similar to any base communication rule.

[Note4**]** : Nearly all transmission data structure consists of these parts: station No, function code, data content, data quantity, check sum. And how about the description in Twin user-define protocol, there is an example:

Group1Block4 = 11 Group1Block4_StartBlock = 1 Group1Block4_EndBlock = 3 Group1Block4_SelectMethod = 1

As above, we can see that Group1Block4 = 11 defines the function of Group1Block4, '11' is the code name which means check sum. And Group1Block4_StartBlock , Group1Block4_EndBlock , Group1Block4 SelectMetho are the extended definition of Group1Block4,

Thus, each block is comprised of function definition and extended definition, for some simple function, there only need to define function, such as Group1Block1 = 4

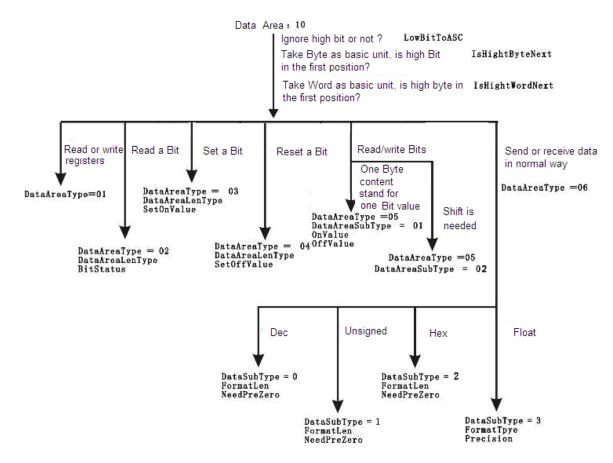
6	•	
Code name	1	
of function		
definition		
Meaning	Static data: use in the case that block value is defined	
Extended	Group X Block Y _StaticValue	
definition		

The following chapter describes the details of code name of function definition(X: group No, Y: block No.):

Code name	2	
of function		
definition		
Meanings	Block length: Bytes length from	starting block to end block.
Extended	Group X Block Y _LowBitToASC	Only remain low bit after ASC
definition		conversion. For example, 0x56 ASC
		Convert to 0x35, 0x36, after pass
		through LowBitToASC , left 0x36.

Group X Block Y _StartBlock	Start Block number, this block is
	included in count.
Group X Block Y _EndBlock	End Block number, this block is
	included in count.

Code name	4	
of function		
definition		
Meanings	Station No.: define the device sta	tion No.
Extended	Group X Block Y _LowBitToASC	Only remain the low bit after ASC
definition		conversion.


Code name	5			
of function				
definition				
Meanings	Command code: define code for '	write' or 'read 'operation.		
Extended	Group X Block Y _LowBitToASC	Block Y _LowBitToASC Only remain the low bit after ASC		
definition		conversion.		
	Group X Block Y _CmdNo	Take Modbus for example, we use		
		function code 3 for 'read holding		
		registers', so it is expressed as Group		
		X Block Y _CmdNo=3		

Code name		7			
of function					
definition					
Meanings	Parameter address: example, we need to set object with D1000 if we want to				
	read the value	of D1000,thus ,1000 is taken as parame	eter address, as below:		
	対象 対象 単 〕 〕 1000 同接指定 When parameter in software is set as 1000, after converting to hexadecimal format, it becomes 03 E8. When parameter in software is set as 1000, after converting to ASC ,it				
Extended	becomes 31 30 30 30. Parameter Group X Block Y _ DispMode=0 Mode				
definition	address		selection(DispMode=0,		
	convert to		convert address to		
	hexadecimal		<i>hexadecimal</i> format)		
	format	Group X Block Y _LowBitToASC	Only remain low bit		

			after ASC conversion
		Group X Block Y_IsHightByteNext	For word, high byte in
			the first position with
			low byte followed
		Group X BlockY _IsHightWordNext	For Dword, high word
			in the first position
			with low word
			followed.
		Group X Block Y _ ParaAddress	Expression of address
			conversion
		The reason why we need expression of	f address conversion is
		that the parameter address face to use	
		ones in data transmission, such as Xin	
		to user is TD0, but in transmission pro	-
		need a expression to describe the relat	
		can see that ,the address in transmissi	
		N+0x3000, thus the expression is <i>Block</i>	
		N+0x3000.	N 1_1 aranaaress =
		Group X Block Y _HoldSpaceSize	(1: Byte; 2: Word;
		Group A block I _moluspacesize	3: DWord) which
			means space size, for
			example, Group X
			BlockY_HoldSpaceSize =2 defines a word size.
	Description		
	Parameter	Group X Block Y _ DispMode = 1	Mode
	address		selection(DispMode=1
	convert to		convert address to ASC
	ASC format		format)
		Group X Block Y _LowBitToASC	Only remain low bit
			after ASC conversion
		Group X Block Y_IsHightByteNext	For word, high byte in
			the first position with
			low byte followed
		Group X BlockY _IsHightWordNext	For Dword, high word
			in the first position
			with low word
			followed.
		Group X Block Y _FormatLen	space size with unit
			Byte.
		Group X Block Y _NeedPreZero	(0: No need; 1: Need)
			Need 0 lead or not
		Group X Block Y _ ParaAddress	Expression of address
			conversion
L	1	1	-

Code name of function definition	8	
Meanings	•	numbers of parameters to operate. veral continuous parameters in one 7.
Extended definition	Group X Block Y _LowBitToASC	Only remain low bit after ASC conversion
	Group X Block Y_IsHightByteNext	For word, high byte in the first position with low byte followed
	Group X BlockY _IsHightWordNext	For Dword, high word in the first position with low word followed.
	Group X Block Y _HoldSpaceSize	which means space size, for example ,GroupXBlockY_HoldSpaceSize=2defines a word size.
	Group X Block Y _CountMethod	(1: BITS; 2: BYTES; 3: WORDS; 4: DWORDS)

Code name of function definition: 10, which describes the data area, the structure is showed as below:

Code	10	
name of		
function		
definition		
Meaning	Data area: save space for transm	it data. For example, if we want write 100 into
s	register D100, thus value 100 is the de	estination to be saved, meanwhile , this area also
	save the read data.	
Extended	Group X Block Y _LowBitToASC	Only remain low bit after ASC conversion
definition	Group X Block Y_IsHightByteNext	For word, high byte in the first position with
		low byte followed.
	Group X BlockY _IsHightWordNext	For Dword, high word in the first position with
		low word followed.
	Group X BlockY _DataAreaLenType	(1: byte; 2: word; 3: dword)
		Group X BlockY _HoldSpaceSize= (2, 3, 4)
		Take effect
	Group X BlockY _BitStatus	Group X BlockY _HoldSpaceSize= 2 Take
		effect, the read bit value
	Group X BlockY _SetOnValue	Group X BlockY_DataAreaType= 3 take effect
	Group X BlockY _SetOffValue	Group X BlockY_DataAreaType= 4 take effect
	Group X BlockY _DataAreaSubType	Group X BlockY_DataAreaType= 5 take effect
	Group X BlockY _OnValue	Group X BlockY_DataAreaType= 5
		Group X BlockY _DataAreaSubType=1

			Take effect
			The status seems ON when the corresponding
			Byte is equal to 'OnValue'
Group X Blo	ckV Off	Waluo	Group X BlockY_DataAreaType= 5
Group A bio		value	Group X BlockY _DataAreaSubType=1 take
			effect
Creary V Blo	al-V Day	to Such Truno	
Group X Blo	CKY_Da	tasubType	(0: Dec 1: Unsigned 2: Hex)
Group X BlockY _FormatLen			Group X BlockY_DataAreaType= 6 take effect
Group A Bio	CKY_FO	rmatLen	Formatlenn describes the Max.length of
			formatting
			Group X BlockY_DataAreaType= 6
			Group X BlockY _DataSubType=(0,1,2) take effect
			Note: Formatlen describes the Max. length of
			formattin, but when the value is set as '0', it
			means the data length adjusts automatically,
			and NeedPreZero is not available.
Group X Blo	ckY_Ne	edPreZero	(0: No need; 1: Need)
			Group X BlockY_DataAreaType=6
			Group X BlockY _DataSubType=(0, 1, 2) take
			effect
Group X BlockY _FormatTpye			(0: expressed in 'dddd.dddd' format)
			Group X BlockY_DataAreaType= 6
			Group X BlockY _DataSubType= 3 take effect
Group X Blo	ckY _Pre	ecision	precision of decimal
			Group X BlockY_DataAreaType= 6
			Group X BlockY _DataSubType= 3 take effect
Group X BlockY _ModNumber			data shift
			Group X BlockY _DataAreaType=5
			Group X BlockY _DataAreaSubType=2 take
			effect
GroupXBl	ockY _D	ataAreaType:	This parameter defines the data area type for
saving data:	Bit, Byte	, Word or other	type.
	Value	Meanings	Description
	1	Read/write	
		register/regi	
		sters	
	2	Read single	Read the needful Bit status from response data
		Bit	word or byte.
			There, we take the Xinje V5series inverter for
GroupXBlo			example to read the rotation direction.
ckY_DataA			The address of rotation direction is H2101, the

геаТуре			third bit indicates the status of direction: value
			'0' shows forward, value '1'shows reverse , code
			is programmed as follow:
			[CommuRule12] ;read status of direction
			IsInherit = 1
			InheritRule = 1
			Group1Block3 = 7
			Group1Block3_HoldSpaceSize = 2
			Group1Block3_ParaAddress = N+0x2101
			Group2Block4 = 10
			Group2Block4_DataAreaType = 2
			Group2Block4_DataAreaLenType = 2
			Group2Block4_BitStatus = P & (1<<2)
			Please note the red part, we already get value
			from H2101, but how to get the status of the
			third Bit?
			Group2Block4_BitStatus = P & (1<<2)
			We use character P stand for the value of
			<i>H2101</i> ; and the $(1 << 2)$ means left shift two bits
			to 0000 0001, then it becomes 0000 0100, after
			that , do the 'and 'operation to P and 0000 0100,
			thus, we get the third bit value.
			If P & (1<<2)=0, the status is OFF,
			If P & (1<<2)=not 0, the status is ON,
			More details regarding 'expression' please
			refer to 'expression' parts in this chapter
	3	Set one Bit	This form is always matched with inverters.
		to ON	On panel, we can control to start or stop the
			inverter with button component: ON means start
			inverter and OFF means control inverter to a
			stop.
			Command controlled to start with forward
			is :write value H0002 to address H2000;
			Command controlled to stop: wire value
			H0007 to address H2000;
			The above means: when control button is in
			pressing status, the panel send command :write
			value H0002 to address H2000;when control
			button is in releasing status, the panel send
			command : wire value <i>H0007</i> to address <i>H2000;</i>
			The following is the code to control the
			inverter to 'forward /stop':
			[Object12] ; forward /stop
			CanAct=0 ; Bit

			1	l
		l		IDSymbol=
		l		TypeNo=11
		l		DescripNum=1
				bitlength = 1
				CanSelectType=1
				ReadBit=13
		l		SetBitOn=17
				SetBitOff=18
				some code is omitted
				[CommuRule17] ; set to forward
				IsInherit = 1
				InheritRule = 15
				Group1Block3 = 7
				Group1Block3_HoldSpaceSize = 2
				Group1Block3_ParaAddress = N+0x2000
				Group1Block4 = 10
				Group1Block4_DataAreaType = 0x03
				Group1Block4_DataAreaLenType = 0x02
				Group1Block4_SetOnValue = 0x0002
				Group2Block3 = 7
				Group2Block3_HoldSpaceSize = 2
				Group2Block3_ParaAddress = N+0x2000
				[CommuRule18] ; coast to a stop/stop
				IsInherit = 1
				InheritRule = 15
				Group1Block3 = 7
				Group1Block3_HoldSpaceSize = 2
				Group1Block3_ParaAddress = N+0x2000
				Group1Block4 = 10
				Group1Block4_DataAreaType = 0x04
				Group1Block4_DataAreaLenType = 0x02
				Group1Block4_SetOffValue = 0x0007
				Group2Block3 = 7
				Group2Block3_HoldSpaceSize = 2
		l		Group2Block3_ParaAddress = N+0x2000
		4	Set single	Same as above
			Bit to ON	
		5	Read/write	1. DataAreaSubType = 0x01
			Bits	Byte value read from data area means status
·	·	·	<u>.</u>	<u>. </u>

	-		
			of Bit (Note: Byte value only means one Bit
			value. For example: value H24 means ON status,
			H45 means OFF status)
			Code is showed as below:
			DataAreaSubType = 0x01
			OnValue = 0x24
			OffValue = 0x45
			2. DataAreaSubType = 0x02
			For Xinje PLC, after panel send the command to
			read value of M10, the response Byte is read into
			buffer register, then the first bit is the value of
			M10. If the first bit is the M10, there is no need
			to shift, then $Group2Block4_ModNumber = 1$; if
			the Nth bit is the M10, shift is needed , then
			$Group2Block4_ModNumber = n.$
			The following is the code used for read the $T = n$.
			0
			Coil M with Xinje PLC:
			Group2Block4 = 10
			Group2Block4_IsHightByteNext = 1
			Group2Block4_DataAreaType = 5
			Group2Block4_DataAreaSubType = 2
			Group2Block4_ModNumber = 1
	6	Send/	
		receive data	This code is used to send/ receive data in normal
		in normal	way.
		way'	For example: 3000 in decimal notation convert to
			Hex notation is BB8, then divided into High
			Byte- <i>0B</i> and Low Byte- <i>B</i> 8, but here ,the normal
			way we use is : divided 3000 in decimal notation
			to 3 0 0 0, then convert into ASC format: 33 30
			30 30;
			This normal way can be divided into two kinds:
			1. Dec , Unsigned, Hex ,
			2. Float
			• Dec , Unsigned, Hex ,
			Example 1: If the data read from one object
			device is time information: 31 31 30 31 34 32, so
			the time is: 11: 01:42, but how to display this time
			on the panel? The code is showed as below:
			-
			Group2Block7=10
			Define the 7 th block in receive area is data area.
			Define the / " block in receive area is data area.

Group2Block7_DataAreaType = 0x06
Define this block to receive data in normal way.
Group2Block7_DataSubType = 1
Define the receive data to display in
'unsigned 'format
Group2Block7_FormatLen = 6
Define the length of receive data is 6
Example 2: NeedPreZero plays an important
role in 'write' operation, but seems no meaning
in 'read' operation.
For example:
Write value 100 into one parameter of a object
device, code is showed as below: Group1Block7 = 10
Define the 7th block in receive area is data area.
Define the 7 th block in receive area is data area.
Group1Block7_DataAreaType= 6
Define this block to receive data in normal way
Group1Block7_DataSubType= 1
Define the receive data to display in
'unsigned 'format
Group1Block7_FormatLen= 6
Define the length of receive data is 6
Group1Block7_NeedPreZero = 1
Define : lead 0 or not(0: no need, 1:need)
If Group1Block7_NeedPreZero = 1, then the
send data is 30 30 30 31 30 30;
If Group1Block7_NeedPreZero = 0 then the
send data is 31 30 30
Obviously, the result is different.
Obviously, the result is unterent.
• Float
Example: if value read from an object device is
31 34 33 37 32 32 36 34 2E 31 30, it means the
value is 14372264.10, so, how to describe this
data area? The code is showed as below:
Group2Block18= 10
Define the 18 th block in receive area is data area.
Define the 18 th block in receive area is data area.

Group2Block18_DataAreaType = 6 Define this block to receive data in normal way
Group2Block18_DataSubType = 3 Define the receive data to display in 'float 'format
Group2Block18_FormatTpye = 0 Define the output format as dddd.dddd; this item is only active for 'write' operation, not useful for 'read 'operation.
Group2Block18_Precision = 2 Define the decimal length is 2

Codo	11					
Code name	11					
of function						
definition						
Meanings	Checkout code: this is used as checkin	g program to get check result. When the code				
	with checkout (there we call this	checkout as checkout A) is entered into				
	communication system, the checking	program get the standard checkout (called				
	checkout B), then compare these tw	o checkout. If they are same, it shows the				
	checkout A is correct and will be perm	itted into communication system, if not, enter				
	the correct code again.					
	An example of CRC checkout:					
	Group1Block7 = 11					
	Group1Block7_StartBlock = 1					
	Group1Block7_EndBlock	= 6				
	Group1Block7_SelectMetl	hod = 3				
	Group1Block7_HoldSpace	eSize = 2;				
	Group1Block7_InitValue = 0xffff					
Extended	Group X Block Y _LowBitToASC	Only remain low bit after ASC conversion				
definition	Group X Block Y _ IsHightByteNext	For word, high byte in the first position with				
		low byte followed.				
	Group X Block Y _ IsHightWordNext	For Dword, high word in the first position				
		with low word followed.				
	Group X Block Y _ StartBlock	Symbol of start block, this block is included				
		in count				

Group X Block Y _ EndBlock	Symbol of end block, this block is included
	in count
Group X Block Y _SelectMethod	Checkout way: (0: Lrc; 1: Sum; 2: -Sum;
	3: CRC_Modbus; 4: CRC_IBM; 5:
	CRC_ITU)
	Note: -sum check means the sum of all data
	and checkout is zero, and checkout is in Byte
	format.

Code name	13
of function	
definition	
Meanings	Incertitude block: this can be used for the uncertain block or indifference block.

• ObjectType : Object Type optimization

This part is used to optimize the communication rules with less quantity of transmission data. For example: we want to deal with the continuous 5 registers in the panel, without optimization, we have to send 5 read messages each cycle, but if we use this function, in convert into read registers mode automatically and read values of 5 registers each time. The following part describes a series of optimized codes:

[ObjectType]			
ObjectTypeNum = 2	; numbers of optimize objects		
[ObjectType0]	; Optimize object type 1 [Note 1]		
IsConvert = 0	; Convert to other object type or not ? (0: no need 1: need)		
$Regs = 1 \qquad ; Wh$	ich communication is this object type belong ? In this example, use the first		
	communication rule.		
MaxLength = 32 ;	[Note 2]		
BitLength = 16 ;	Bit length of this object type.		
[ObjectType1] ;	Optimize object type 2 [Note 3]		
IsConvert = 1 ;	Convert to other object type or not ? (0: no need 1: need)		

ToObjectType = 0 ; convert to	wł	hich object type? In this example, the value is zero
$TargetAddress = H + 0x3000 \qquad ; \qquad$	(Conversion expression of object address
BitLength = 16	;	Bit length of this object type

Notation:

[Note 1] :From the 'Object type' part, we know that each object has description of object optimization, there is an example:

[Object1]	
CanAct=1	
IDSymbol=D	
<u>TypeNo=0</u>	;The matched 'object opitmization' No. in this example it is ObjectType0
bitlength = 16;	
DescripNum=1	
CanSelectType=12	

[Note 2] : It is advised to set the 'Maxlength' with appropriate value, because redundant object would lead to inadequate device addresses and faulty in data transmission.

(Note 3**)** : Obviously, the structure of ObjectType0 is easy to interpret, but why do we convert ObjectType1 to ObjectType0? There we take Xinje PLC for example to explain.

[Object1] CanAct=1 IDSymbol=D TypeNo=0 bitlength = 16; DescripNum=1 CanSelectType=12 ReadWord = 1 ReadDWord = 1 WriteWord = 47 WriteDWord = 8 [Object2] CanAct=1 **IDSymbol=TD** TypeNo=1 bitlength = 16; DescripNum=1 CanSelectType=12 **ReadWord = 2**

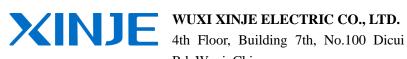
ReadDWord = 2 WriteWord = 9 WriteDWord = 9 ----- some code is omitted------[ObjectType] **ObjectTypeNum = 2** [ObjectType0] IsConvert = 0 Regs = 1MaxLength = 32BitLength = 16 [ObjectType1] IsConvert = 1 **ToObjectType = 0 TargetAddress = H+0x3000** BitLength = 16

Please note the red part of above codes, as we can see, the common registers D is matched with object optimization type 0, but time registers TD is matched with object optimization type 1.

Although there is difference between these two type registers in the functions of PLC program, but in the view of physics space, they are completely same, more details can refer to Xinje XC series PLCs- communication based on Modbus protocol.

Then we find that the Modbus address of D0 is 4x0, and TD0 is 4x3000, but the data structure of them are same during the transmission ,in other word ,on the layer of data transmission with devices, they are only have difference in address, thus, object type conversion is needed.

Expression


Eg. 0x1600+N/8

arithmetic: +, -, *, /, %, (,), <<, >>, &, | digital type: Dec without sign (123), Hex (0xe1; 0XE1) Note: dont't support the expression of negative, such as -123

Special symbol :N(read or write the 1st description value); M(read or write the 1st description value),R (group quantity of registers;P(response data from 'data aera') Note: capials are not distinguished.

Levels of arithmetic (from high to low) :

The 1st level: (,) The 2nd level: *, / , % The 3rd level: + , -The 4th level: << , >> The 5th level: & The 6th level: |

Rd, Wuxi, China Tel: 86-0510-85134139 Fax: 86-0510-85111290 www.xinje.com Email: cheerfiona@gmail.com